DERIVATIVE FORMULA AND HARNACK INEQUALITY FOR DEGENERATE FUNCTIONAL SDEs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnack Inequality for Functional Sdes with Bounded Memory

We use a coupling method for functional stochastic differential equations with bounded memory to establish an analogue of Wang’s dimension-free Harnack inequality [13]. The strong Feller property for the corresponding segment process is also obtained.

متن کامل

The Harnack inequality for a class of degenerate elliptic operators

We prove a Harnack inequality for distributional solutions to a type of degenerate elliptic PDEs in N dimensions. The differential operators in question are related to the Kolmogorov operator, made up of the Laplacian in the last N−1 variables, a first-order term corresponding to a shear flow in the direction of the first variable, and a bounded measurable potential term. The first-order coeffi...

متن کامل

Harnack Inequalities for Degenerate Diffusions

We study various probabilistic and analytical properties of a class of degenerate diffusion operators arising in Population Genetics, the so-called generalized Kimura diffusion operators [8, 9, 6]. Our main results are a stochastic representation of weak solutions to a degenerate parabolic equation with singular lower-order coefficients, and the proof of the scaleinvariant Harnack inequality fo...

متن کامل

Boundary Harnack principle and elliptic Harnack inequality

We prove a scale-invariant boundary Harnack principle for inner uniform domains over a large family of Dirichlet spaces. A novel feature of our work is that our assumptions are robust to time changes of the corresponding diffusions. In particular, we do not assume volume doubling property for the symmetric measure.

متن کامل

Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations

In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when “the gradient is small”. Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastics and Dynamics

سال: 2012

ISSN: 0219-4937,1793-6799

DOI: 10.1142/s021949371250013x